Structure Dynamics of Liposomes and Proteoliposomes analyzed by
Time-Resolved Neutron Small Angle Scattering TR-SANS
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Biological membranes — Energization by the proton potential difference

Biological membranes of energy metabolism in Mitochondria, Chloroplasts and micro-organisms perform their function by membrane-energization which isthe
generation of an electrochemica proton potentia difference across a membrane. This couplesthe energy of respiration, photosynthesis or ion transport to membrane
proteins as ATP-synthaseand Cytochrome-Oxidoreductases: function by energetic coupling during proton transport.

Furthermore the membrane potentid acts as an effector in the molecular regulation of severa proteins: structural regulation by the physical membrane.

While the biological relevance is clear, the effect of the electrochemical membrane potentiad difference on lipid and protein structure and function has to be
investigated a the molecular level. Those processes can be studied with liposomes as homogenous model membranes using time resolved methods (transent states).

Linosomes as model membranes — Reconstitution and Energization by pH-jump

Theenergized membrane state was estimated by spectroscopy and
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Asnove results we observed a¢mge in lipid bilayer The experiments are currently extended to ATP-synthaseliposomes. In those proteoliposomes the lipid
Structureupon membrane energization (? pH > 05). The entity was matched by contrast variation, i.e. application of D,O/H,O-mixtures as solvent. The liposomes
thickness of the hydrophobic core shrinked by 1 Angstroem from DMPC-D,, were matched by 85% D,O-buffer, while the lipid contributed 98% of the particle mass.
while no swelling (liposome size change by water upteke) After subtraction of the neutron scattering of matched protein-free reference liposomes, the scattering
was observed in the choosen system (10% glycerol-buffer). contribution of the protein in situ was obtained and compared to the neutron scattering of purified ATP-
Spectroscopic experiments with pH-indicator entrapped synthasein detergent solution (5 mM TDOC, 10% dlycerol). ApH<0,3 ypH > 0,4
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